Multidisciplinary management of Locally advanced gastric cancer: challenges for the surgeon

Fatih Ağalar, MD, FACS Professor of Surgery, Intensive Care Specialist fatihagalar@anadolusaglik.org

Frame

- Multidisciplinary approach
 Digestive tumor board
- Locally advanced gastric cancer
- Prognosis
- Correct Staging
- Treatment Standards
- Towhat extendextensive surgery
 - DI, II, III, more. . .
 - Multiorgan resection
 - R0, RI, RII,
- Peritoneal recurrence
 - HPEC/Cytoreductive surgery

'Sağlığın Merkezi'

JOHNS HOPKINS MEDICINE

Locally advanced gastric cancer

Tumors infiltrating or adherent to adjacent organs and/or structures with or without lymph node involvement in patients without distant metastasis.

- Gastric carcinomas are considered unresectable
 - peritoneal involvement,
 - distant metastases,
 - locallyadvanceddisease
 - invasion or encasement of major blood vessels.

- Long-termsurvival of patients with invasion to adjacent organs is poor.
- For locally advanced gastric cancer with adjacent organ infiltration, extended resection including the invaded organ is required to achieve RO resection with negative surgical margins

5 year surviaval rates after ROGastrectory,

Concer, 2000

ACC stage L	J.S.A	Japon	Japonimmegrant
IA	78%	95%	95%
IB	58%	86%	75%
II	34%	71%	46%
IIIA	20%	59%	48%
IIIB	8%	35%	18%
IV	7%	17%	5%
Genel	28%	NR	42%

TNVStaging, Gastric Cancer

Table 2

TNM staging of gastric cancer (7th Edition of AJCC/UICC guidelines) [6,7].

Primary tumour (T)		Regi	Regional lymph nodes (N)		nt metastasis (M)
тх	Primary tumour cannot be assessed	NX	Regional lymph node(s) cannot be assessed	MX	Distant metastasis cannot be assessed
TO	No evidence of primary tumour	N0	No regional lymph node metastasis	MO	No distant metastasis
Tis	Carcinoma in situ: intraepithelial tumour without invasion of the lamina propria	N1	Metastasis in 1–2 regional lymph nodes	M1	Distant metastasis or positive peritoneal cytology
T1a	Tumour invades lamina propria or muscularis mucosae	N2	Metastasis in 3–6 regional lymph nodes		
T1b	Tumour invades submucosa	N3	Metastasis in 7 or more regional lymph nodes		
T2	Tumour invades muscularis propria				
Т3	Tumour penetrates subserosal connective tissue without invasion of visceral peritoneum or adjacent structures				
T4a	Tumour invades serosa (visceral peritoneum)				
T4b	Tumour invades adjacent structures				

Edge SB, Byrd DR, Compton CC, eds. AJCC Cancer Staging Handbook, 7th ed. New York, NY: Springer, 2010. Used with the permission of the American Joint Committee on Cancer (AJCC), Chicago, Illinois. The original source for this material is the AJCC Cancer Staging Handbook, Seventh Edition (2010) published by Springer Science and Business Media LLC, www.springer.com.

* T3 tumours also include those extending into the gastrocolic or gastrohepatic ligaments, or into the greater or lesser omentum, without perforation of the visceral peritoneum covering these structures.

Adjacent structures include the spleen, transverse colon, liver, diaphragm, pancreas, abdominal wall, adrenal gland, kidney, small intestine and retro-peritoneum.

Staging and treatment principles

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)

Gastric Cancer

Version 1.2014

NCCN.org

23.11.2014 6

23.11.2014 7

STAGINGLAPAROSCOPY

Printed by tath agains on 11/b/2014 //51/51 PM. For personal use only. Not approved for distribution. Copyright © 2014 National Comprehensive Cancer Network, Inc., All Hights Heserved National NCCN Guidelines Version 1.2014 Comprehensive NCCN Guidelines Index NCCN Gastric Cancer Table of Contents Cancer **Gastric Cancer** Discussion Network® FINAL STAGE^h PRIMARY TREATMENT Endoscopic Medically unfit Tis or T1a Endoscopic resection (ER)^a surveillance^a ER^a Medically fit Tis or T1a or Surgical Outcomes Surgery^e for Patients Who Surgery^{e,I} T1b Have Not Received Preoperative Therapy Surgery^{e,I} Medically fit,ⁱ (see GAST-3) potentially or resectable Preoperative chemotherapy^m Surgical Outcomes T2 or higher, (category 1) for Patients Who Have Surgery^{e,I} --Any N or Received Preoperative Preoperative chemoradiation^{m,r} Therapy (see GAST-4) (category 2B) Post Treatment Laparoscopic Concurrent fluoropyrimidine- or taxane-based Assessment/ chemoradiation^{m,n} (category 1) findings of Medically fit,ⁱ Additional Locoregional unresectable or Management disease (M0) Chemotherapym (see GAST-5) Post Treatment Assessment/ Concurrent fluoropyrimidine- or taxane-based Additional • chemoradiation^{m,n} (category 1) (Definitive) Management Medically unfit or (see GAST-5) Palliative Management (see GAST-7) Laparoscopic findings of Palliative Management (see GAST-7) metastatic disease (M1)

In Affiliation with

JOHNS HOPKINS MEDICINE

'Sağlığın Merkezi'

23.11.2014 8

RE-STAGING after neoadjuvant therapy

23.11.2014 9

D2dissection

NCCN Guidelines Version 1.2014 **Gastric Cancer**

NCCN Guidelines Index Gastric Cancer Table of Contents Discussion

 N Staging Determine extent of disease by CT scan (chest, abdomen, and pelvic) ± EUS (if no metastatic disease seen on CT) In patients being considered for surgical resection without pre-operative therapy, laparoscopy¹ may be useful in detecting radiographically occult metastatic disease in patients with T3 and/or N+ disease seen on preoperative imaging. If laparoscopy is performed as a separate procedure, peritoneal washings should be performed as meta 	Resectable tumors • Tis or T1 ⁷ tumors limited to mucosa (T1a) may be candidates for endoscopic mucosal resection (in experienced centers) ⁸ • T1b-T3 ⁵ : Adequate gastric resection to achieve negative microscopic margins (typically ≥4 cm from gross tumor). • Distal gastrectomy • Subtotal gastrectomy				
 In patients receiving pre-operative therapy, a baseline I paroscopy along with peritoneal washings should be considered. Positive peritoneal cytology (performed in the absence of visible peritoneal implants), is associated with poor prognosis and is defined as M1 disease.² <u>Siewert Classification</u> Siewert tumor type should be assessed in all patients v th adenocarcinomas involving the esophagogastric junct in (EGJ).^{3,4} Siewert Type I: adenocarcinoma of the lower esophag is (often associated with Barrett's esophagus) with the center ocated within 1 cm to 5 cm above the anatomic EGJ. Siewert Type II: true carcinoma of the cordia at the EC , with the tumor center within 1 cm above and 2 cm below the E J. Siewert Type II: subcardial carcinoma with the tumor enter between 2 and 5 cm below EGJ, which infiltrates the EGJ and I wer esophagus 	 T4 tumors require en bloc resection of involved structures Gastric resection should include the regional lymphatics—perigastric lymph nodes (D1) and those along the named vessels of the celiac axis (D2), with a goal of examining at least 15 or greater lymph nodes¹⁰⁻¹² Definition of D1 and D2 lymph node dissections O D1 dissection entails gastrectomy and the resection of both the greater and lesser omenta (which would include the lymph nodes along right and left cardiac, along lesser and greater curvature, suprapyloric along the right gastric artery, and infrapyloric area); O D2 dissection is a D1 plus all the nodes along the left gastric artery, common hepatic artery, celiac artery, splenic hilum and splenic artery. Routine or prophylactic splenectomy is not required.¹³ Splenectomy is acceptable when the spleen or the hilum is involved. Consider placing feeding jejunostomy tube in select patients (especially if postoperative chemoradiation appears a likely recommendation) 				
 The treatment of Siewert types I and II is as described in the NCCN <u>Guidelines for Esophageal and EGJ cancers</u>. Siewert type III lesions are considered gastric cancers, and thus should be treated as described in the NCCN <u>Guidelines for Gastric Cancer</u>. In obtain adequate margins.^{3,5,6} <u>Criteria of unresectability for cure</u> Locoregionally advanced Level N3 (hepatoduodenal and root of mesentery) or N4 (para-aortic) lymph node highly suspicious on imaging or confirmed by biopsy Invasion or encasement of major vascular structures (excluding the splenic vessels) Distant metastasis or peritoneal seeding (including positive peritoneal cytology) 	Palliative procedures • Gastric resections should be reserved for the palliation of symptoms (eg, obstruction or uncontrollable bleeding) in patients with incurable disease. Lymph node dissection not required In patients fit for surgery and who have a reasonable prognosis, gastrojejunostomy (open or laparoscopic) is preferable to endoluminal stenting in patients with gastric outlet obstruction. ¹⁴ Venting gastrostomy and/or jejunostomy tube may be considered				
ğın Merkezi'					

'Sağlığın Merkezi'

10

23.11.2014

- Dutch RCT: D1vsD2lymphadenedtomy
 - significant reduction in the proportion of locoregional recurrence and cancer-related death after a longfollow-up.

• TaiwaneseRCT:

- significant survival benefit of D2 or more extensive lymphadened only compared with D1 lymphadened only
- European Society for Medical Oncology Guideline for gastric cancer and the National Comprehensive Cancer Network Guideline for gastric cancer, now recommendan <u>extended D2</u> <u>lymphadenectomy</u> as in the Japanese guidelines.

WHENYOUHAVETOSHOOT, SHOOT. DONTTALK! Eli Wallach

From (very) GOOD, (never) Bad, and (Occasionaly) UGLY

'Sağlığın Merkezi'

In Affiliation with JOHNS HOPKINS MEDICINE

23.11.2014 12

Standardtreatment?

- NCCN
- Japanese
- ESVO
- SWOG, 0116
- MAGIC
- Frenchtrial
- Newerones
- Organgtrials...

'Sağlığın Merkezi'

23.11.2014 13

Japanese Standard

Table 6 - Recommendations given by the Japanese Gastric Cancer Treatment Guidelines (3rd edition) 2010

	N0	N1 (1-2)	N2 (3-6)	N3 (>7)
T1a	ESD (well diff. <2 cm)	D1+8a, 9 (<2 cm) D2 (>2.1 cm)	D2	D2
T1b	D1 (well diff. <1.5 cm) D1+8a, 9	D1+8a, 9 (<2 cm) D2 (>2.1 cm)	D2	D2
T2	D2	D2+CT adjuv.	D2+CT adjuv.	D2+CT adjuv.
T3	D2+CT adjuv.	D2+CT adjuv.	D2+CT adjuv.	D2+CT adjuv.
T4a	D2+CT adjuv.	D2+CT adjuv.	D2+CT adjuv.	D2+CT adjuv.
T4b	D2+CT adjuv.	D2+CT adjuv.	D2+CT adjuv.	D2+CT adjuv.
L	+ combined resection	+ combined resection	+ combined resection	+ combined resection
Any M	1: chemotherapy, palliative surgery, palli	ative treatments.		

European Standard

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Guidelines

Gastric cancer[†]: ESMO-ESSO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up

Tom Waddell^a, Marcel Verheij^b, William Allum^c, David Cunningham^d, Andrés Cervantes^e, Dirk Arnold^{f,*}

^a GI Clinical Trials Unit, Royal Marsden Hospital, Sutton, UK; ^b Department of Radiation Oncology and Division of Biological Stress Response, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands; ^c Department of Surgery, Royal Marsden Hospital, London; ^d Department of Medicine, Royal Marsden Hospital, Sutton, UK; ^e Department of Hematology and Medical Oncology, INCLIVA, University of Valencia, Spain; ^f Department of Medical Oncology, Tumor Biology Clinic, Albert Ludwigs University, Freiburg, Germany

ARTICLE INFO

Article history: Received 18 September 2013 Accepted 21 September 2013

Meta-analysis of adjuvant chemotherapy after radical surgery for advanced gastric cancer. P. Sun, BJS. 2009

Peference		Hazard ratio	Weight	Hazard ratio	
Reference	Log(overall survival) (s.e.)	(fixed)	(%)	(fixed)	
Cirera <i>et al.</i> 22	-0.5108 (0.2217)		5.28	0.60 (0.39, 0.93)	
Nakajima <i>et al.</i> ³²	-0.3038 (0.2005)		6.46	0.74 (0.50, 1.09)	
Neri <i>et al.</i> ²³	-0.6730 (0.2005)	_	6-46	0.51 (0.34, 0.76)	
Bajetta <i>et al.</i> ²⁴	-0.0726 (0.1846)		7.62	0.93 (0.65, 1.34)	
Nashimoto <i>et al.</i> ³³	-0.5194 (0.3430)		2.21	0.59 (0.30, 1.17)	
Chipponi <i>et al.</i> ²⁹	-0.0875 (0.1928)	o	6.98	0.92 (0.63, 1.34)	
Popiela <i>et al.</i> ³⁰	-0.1985 (0.1124)	-8-	20.54	0.82 (0.66, 1.02)	
Bouche <i>et al.</i> ²⁵	-0·3011 (0·1622)		9.87	0.74 (0.54, 1.02)	
Nitti <i>et al</i> . (EORTC) ²⁶	-0.1165 (0.2467)		4.26	0.89 (0.55, 1.44)	
De Vita <i>et al.</i> 27	-0.0943 (0.1433)		12.64	0.91 (0.69, 1.21)	
Nakajima <i>et al.</i> ³¹	-0.7340 (0.3139)	0	2.63	0.48 (0.26, 0.89)	
Sakuramoto <i>et al.</i> 28	-0.3857 (0.1313)		15.06	0.68 (0.53, 0.88)	
Total			100.00	0.76 (0.69, 0.84)	
Test for heterogeneity: χ^2	= 15·84, 11 d.f., <i>P</i> = 0·15, <i>I</i> ² = 30·5%				
Test for overall effect: $Z =$	5-18, <i>P</i> < 0.001		1		
	(0.1 0.2 0.5 1 2 5	10		
	Favours chemoth	erapy + surgery Favours surgery alo	one		

Fig. 4 Meta-analysis of overall survival in randomized clinical trials comparing chemotherapy plus surgery with surgery alone, after exclusion of the International Collaborative Cancer Group trial reported by Nitti and colleagues²⁶. Hazard ratios are shown with 95 per cent confidence intervals. EORTC, European Organization for Research and Treatment of Cancer

Adjuvant radiotherapy is beneficial after curative surgery for locally advanced gastric cancer

NCCNTreatment recommendations Preoperative chemotherapy/ chemoradiation

In Affiliation with JOHNS HOPKINS MEDICINE

23.11.2014 17

Extended Surgery in Gastric Cancer

23.11.2014 18

Surgeonistherewheretheactionis!

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JULY 31, 2008

VOL. 359 NO. 5

D2 Lymphadenectomy Alone or with Para-aortic Nodal Dissection for Gastric Cancer

Mitsuru Sasako, M.D., Takeshi Sano, M.D., Seiichiro Yamamoto, Ph.D., Yukinori Kurokawa, M.D., Atsushi Nashimoto, M.D., Akira Kurita, M.D., Masahiro Hiratsuka, M.D., Toshimasa Tsujinaka, M.D., Taira Kinoshita, M.D., Kuniyoshi Arai, M.D., Yoshitaka Yamamura, M.D., and Kunio Okajima, M.D., for the Japan Clinical Oncology Group

'Sağlığın Merkezi'

ANADOLU

23.11.2014 19

'Sağlığın Merkezi'

23.11.2014 20

Table 2. Site of First Tumor Recurrence.*								
Site	D2 Lymphadenectomy Alone (N = 109)	D2 Lymphadenectomy plus PAND (N=106)						
	no.	(%)						
Peritoneum	43 (39.4)	39 (36.8)						
Lymph nodes	24 (22.0)	23 (21.7)						
Liver	21 (19.3)	24 (22.6)						
Others	21 (19.3)	20 (18.9)						

* In nine patients in the group assigned to D2 lymphadenectomy alone and seven patients in the group assigned to D2 lymphadenectomy plus para-aortic nodal dissection (PAND), more than one site was involved at the time of first recurrence.

PAND denotes para-aortic nodal dissection.

In Affiliation with JOHNS HOPKINS MEDICINE

'Sağlığın Merkezi'

23.11.2014 21

ORIGINAL ARTICLE

Multivisceral Resection for Locally AdvancedGastric CancerJAMA Surg. 2013;148(4):353-360

An Italian Multicenter Observational Study

Fabio Pacelli, MD; Giacomo Cusumano, MD; Fausto Rosa, MD; Daniele Marrelli, MD; Mariantonietta Dicosmo, MD; Chiara Cipollari, MD; Alberto Marchet, MD; Stefano Scaringi, MD; Stefano Rausei, MD; Alberto di Leo, MD; Franco Roviello, MD; Giovanni de Manzoni, MD; Donato Nitti, MD; Francesco Tonelli, MD; Giovanni Battista Doglietto, MD; for the Italian Research Group for Gastric Cancer (IRGGC)

Figure 1. Consort diagram of the study.

		No./No.		
	Nonresectional Surgery	Gastrectomy Alone	Multiorgan Resection	P Value
Postoperative mortality	0/7	3/7	4/7	.55
Major complications	9/65	18/65	38/65	.38
Sepsis	1/11	5/11	5/11	.36
Anastomotic leak	1/14	5/14	8/14	.50
Bowel infarction	0/4	2/4	2/4	.47
Pancreatic complications ^a	1/18	3/18	14/18	.50
Respiratory complications ^b	0/6	5/6	1/6	.26
Cardiac complications ^c	1/4	3/4	0/4	.06
Other ^d	2/8	2/8	4/8	.90

mancreatic fistula, acute pancreatitis, pancreatic necrosis, and pancreatic abscess.

^b Pneumonia and postoperative respiratory insufficiency. ^c Myocardial infarction, arrhythmia, and cardiogenic shock. ^d Ictus cerebri, renal failure, and hepatic dysfunction.

R0, RI, RII survival

'Sağlığın Merkezi'

Figure 3. Survival rate according to the completeness of resection.

Nstatusandsurvival

'Sağlığın Merkezi'

Figure A. Summal rate according to the godal status

Multivariateregression

Feature	Cox Univariate Regression Model, HR (95% Cl)	P Value	Cox Multivariate Regression Model, HR (95% Cl)	P Value
Sex	1.01 (0.99-1.03)	.29		
Age ≥65 y	0.97 (0.60-1.55)	.89		
Site of tumor	0.99 (0.81-1.21)	.94		
Bormann classification	1.19 (0.76-1.90)	.44		
Lauren classification	0.73 (0.42-1.26)	.26		
Multiple resection	1.22 (0.76-1.95)	.39		
Spleen	1.48 (0.94-2.35)	.09		.49
Colon	0.78 (0.49-1.22)	.28		
Pancreas	1.04 (0.66-1.63)	.85		
Liver	0.73 (0.40-1.38)	.35		
Peritoneum	1.78 (1.02-3.10)	.04		.71
Diaphragm	0.52 (0.16-1.65)	.27		
Other organs	1.10 (0.53-2.32)	.78		
Tumor size, cm				
< 7	1.74 (1.01-1.14)	.02		.39
>7	0.04 (0.38-3.01)	.04		
pT	0.71 (0.38-1.32)	.28		
nN	1.83 (1.42-2.36)	<.001	1.77 (1.28-2.43)	< .001
No. of lymph nodes	1.00 (0.99-1.01)	.87		
No. of pathologic lymph nodes				
<15	1.02 (1.01-1.03)	<.001		.92
>15	2.08 (1.30-3.33)	<.002		
Type of lymphadenectomy	1.00 (0.71-1.40)	>.99		
R (R0, R1, and R2)	1.81 (1.36-2.39)	<.001	1.64 (1.15-2.34)	.006
Cytology	1.35 (1.01-1.83)	.04		

Abbreviation: HR, hazard ratio.

'Sağlığın Merkezi'

- Patients undergoing extended resections experience acceptable postoperative morbidity and mortality rates
- En-bloc multi-visceral resection should be performed
 complete resection can be realistically obtained
 when lymph node metastasis is not evident

Achieving R0 Resection for Locally Advanced Gastric Cancer: Is It Worth the Risk of Multiorgan Resection? Martin RGer al. Journal of the American College of Surgeons, 2002

- 337=single additional organ resected
- 63=2 additional organ
- 18=3 additional organ
- 580 complications: 33% of patients
- Perioperative mortality: 4%
- The number of resected organs (RR3.8) is a major risk factor for severe complications

Prognostic factors, multivisceral resection

Table 5 Prognostic factors determined by multivariate analysis					
Variables OR 95% CI					
Age >70 y Lymph node metastasis Number of organs resected	3.32 11.48 2.65	1.37-8.08 2.48-53.10 1.30-5.42	.008 .002 .007		

R1 resection, positive resection margin

Available online at www.sciencedirect.com

SciVerse ScienceDirect

EJSO the Journal of Cancer Surgery

EJSO 39 (2013) 229-234

www.ejso.com

Prognostic improvement of reexcision for positive resection margins in patients with advanced gastric cancer

J.-D. Chen^a, X.-P. Yang^b, J.-G. Shen^a, W.-X. Hu^a, X.-M. Yuan^a, L.-B. Wang^{a,*}

^a Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, PR China ^b Department of General Surgery, Taizhou Central Hospital, Taizhou, Zhejiang 318000, PR China

> Accepted 13 August 2012 Available online 17 November 2012

- Retrospective:
- N222 (with positive margins who underwent potentially curative resection for locally advanced GC).
- 50 patients (re-excised to a negative resection margin)
- 72 patients who were left with a positive resection margin were compared using univariate and multivariate analyses.

Figure 2. Survival curves for $\leq pN2$ -category patients with either negative margins or positive margins at final histological analysis.

Table 2

Univariate and multivariate analyses of factors influencing overall survival.

Factor	Univariate	Multivariate	
	p Value	p Value	
Type of lymphadenectomy	0.006	0.002	
Positive resection margin	0.019	0.048	
pN-category	0.042	0.011	
pTNM stage	0.043	0.932	

Gastrectomy in Advanced Gastric Cancer Effectively Palliates Symptoms and May Improve Survival in Select Patients. Collins A. J. Gastrointest Surg (2014)

Incomplete (i.e., R2) gastrectomy in advanced gastric cancer (?)

Retrospective:

- n: 210 locally advanced or metastatic gastric cancer pts (1992-2008).
- Threegroups:
 - Gastrectomy (N=99),
 - Exploration without resection (N=66),
 - Nosurgery (N=45).

- Symptom resolution after gastreetomy.48%
- Complication rate: 32%
- Mortality:6%
- Overall median survival: 6.2 months
 - 10.0months after gastrectomy,
 - 4.1 months after exploration without resection
 - 5.3monthsfor nosurgery (p<0.001).

'Sağlığın Merkezi'

23.11.2014 37

Peritoneal Recurrence

- Survival is poor
- Despite adjuvant chemotherapy, AGC patient often develop recurrence
- Peritoneum is the most common site of recurrence
- intraperitoneal chemotherapy has been proposed as a treatment option

Factors predicting peritoneal recurrence in advanced gastric cancer: implication for adjuvant intraperitoneal chemotherapy HEEJL, Gastric Cancer (2014)

- Nt 805AGC, curative D2 gastreetory (2003-2009)
- 5-year peritoneal recurrence-freesurvival was 79.3%
- Recurrence=245 patients (30.4%).
- Riskfactors for peritoneal recurrence=
 - Depthof tumor invasion CT3
 - Extensivelymphnodemetastasis(NB)
 - Bornantype4
 - Vencusinvasion

Available online at www.sciencedirect.com

EJSC the Journal of Cancer Surgery

EJSO 40 (2014) 12-26

www.ejso.c

Review

Intraperitoneal chemotherapy in advanced gastric cancer. Meta-analysis of randomized trials

Coccolini ^{a,b,*}, E. Cotte ^b, O. Glehen ^b, M. Lotti ^a, E. Poiasina ^a, F. Catena ^c, Y. Yonemura L. Ansaloni ^a

^a General Surgery Dept., Papa Giovanni XXIII Hospital, Bergamo, Italy ^b General Surgery Dept., Centre Hospitalier Lyon Sud, Hospices Civils de Lyon and EMR 3738, Université Lyon 1, France ^c General Surgery Dept., Ospedale Maggiore, Parma, Italy ^d General Surgery Dept., Kusatsu General Hospital, Yabase 1660, Japan

Accepted 23 October 2013

Overall mortality at one year

F. Coccolini et al./EJSO 40 (2014) 12-26

-		Surgery+intrap chemo	ther	Surge	ry i		Odds Ratio	Odds Ratio
Α	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year M-H, Random, 95% Cl
	1.1.1 Treatment of Pe	ritoneal carcinosis						
	Sautner 2004	11	33	20	34	18.9%	0.35 [0.13, 0.95]	2004
	Yang 2011	10	34	24	34	17.4%	0.17 [0.06, 0.49]	2011
	Subtotal (95% CI)		67		68	36.3%	0.25 [0.12, 0.51]	◆
	Total events	21		44				
	Heterogeneity: Tau ² =	0.00; Chi ² = 0.91, df = 1 (P = 0.3	4); l² = 05	6			
	Test for overall effect: 2	Z = 3.77 (P = 0.0002)						
	1.1.2 Prophylaxis of F	eritoneal carcinosis						
	Hagiwara 1992	3	24	8	25	9.1%	0.30 [0.07, 1.32]	1992
	Fujimura 1994	3	40	10	18	8.8%	0.06 [0.01, 0.29]	1994
	Tan 2000	1	22	4	29	3.9%	0.30 [0.03, 2.87]	2000
	Zuo 2004	1	46	2	36	3.4%	0.38 [0.03, 4.34]	2004
	Ding 2007	4	41	7	37	11.2%	0.46 [0.12, 1.73]	2007
	Kuramoto 2009	10	59	6	29	15.1%	0.78 [0.25, 2.41]	2009
	Deng 2009	4	44	9	41	12.1%	0.36 [0.10, 1.26]	2009
	Subtotal (95% CI)		276		215	63.7%	0.34 [0.18, 0.62]	•
	Total events	26		46				
	Heterogeneity: Tau ² =	0.10; Chi ² = 7.05, df = 6 (P = 0.3	2); l ² = 15	**			
	Test for overall effect: 2	Z = 3.48 (P = 0.0005)						
	Total (95% CI)		343		283	100.0%	0.31 [0.19, 0.48]	◆
	Total events	47		90				
	Heterogeneity: Tau ² =	0.03; Chi ² = 8.44, df = 8 (P = 0.3	9); l² = 59	6			
	Test for overall effect:	Z = 5.10 (P < 0.00001)						Favours suratiotran chemo Favours surgery
	Test for subgroup diffe	rences: Chi ² = 0.39, df =	1 (P = 0).53), I ^z =	0%			arous say musp chemo rarous sayary

'Sağlığın Merkezi'

Overall mortality at two years

Figure 1. Overall mortality at 1 year (A) and at 2 years (B).

Overall mortality at 5 years

Figure 2. Overall mortality at 3 years (C) and at 5 years (D).

Peritoneal recurrencerate

В

'Sağlığın Merkezi'

	Surgery+intrap che	mother	Surge	ry		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	Year	M-H, Fixed, 95% Cl
6.2.1 Treatment of Pe	eritoneal carcinosis							x
Fujimoto 1999	1	71	16	70	11.6%	0.05 [0.01, 0.37]	1999	· · · · · · · · · · · · · · · · · · ·
Yang 2011	27	34	27	34	4.1%	1.00 [0.31, 3.24]	2011	
Subtotal (95% CI)		105		104	15.7%	0.29 [0.12, 0.70]		-
Total events	28		43					
Heterogeneity: Chi ² =	7.14, df = 1 (P = 0.008); l ² = 86%	2					
Test for overall effect:	Z = 2.77 (P = 0.006)							
6.2.2 Prophylaxis of	Peritoneal carcinosis							
Hamazoe 1993	7	42	13	40	8.1%	0.42 [0.15, 1.18]	1993	
Fujimura 1994	7	40	4	18	3.3%	0.74 [0.19, 2.95]	1994	
Ikeguchi 1995	22	78	38	96	17.9%	0.60 [0.32, 1.14]	1995	
Yu 1998	19	125	37	123	23.2%	0.42 [0.22, 0.78]	1998	
Rosen 1998	6	46	4	45	2.6%	1.54 [0.40, 5.86]	1998	
Tan 2000	0	22	6	29	4.0%	0.08 [0.00, 1.51]	2000	· · · · · · · · · · · · · · · · · · ·
Yonemura 2001	15	92	7	47	5.7%	1.11 [0.42, 2.95]	2001	
Ding 2007	9	41	15	37	9.0%	0.41 [0.15, 1.11]	2007	
Kuramoto 2009	35	59	26	29	10.4%	0.17 [0.05, 0.62]	2009	
Subtotal (95% CI)		545		464	84.3%	0.50 [0.37, 0.68]		•
Total events	120		150					
Heterogeneity: Chi ² =	10.68, df = 8 (P = 0.22); P = 25%						
Test for overall effect:	Z = 4.37 (P < 0.0001)							
Total (95% CI)		650		568	100.0%	0.47 [0.35, 0.63]		•
Total events	148		193					23 JU 10 10 10 10
Heterogeneity: Chi ² =	17.36, df = 10 (P = 0.0	7); 12 = 42	%					
Test for overall effect:	Z = 5.12 (P < 0.00001)					Faw	ours surgitintrap chemo Eavours surgery
Test for subaroup diffe	erences: Chi ^a = 1.30. d	1=1(P=0).26), I [#] =	22.8%			. av	ours and minab cuerto. Lavours and buy

Figure 3. Recurrence rate: overall (A) and peritoneal (B).

ANADOLU[®]

HIPEC

- 1,2 and 3-year overall survival is incremented by the IPC.
- Apositive effect of IPC has been found on overall and peritoneal recurrence and on distant metastasis.
- Morbidity rate is incremented by IPC.
- Loco-regional lymph-nodes invasion in patients affected by advanced gastric cancer is not a contraindication to IPC.

Assessment of Response Following Neoadjuvant Therapy-Biopsy

- Endoscopic biopsyafter CRT has been used to determine response
- N: 156 patients (NSKCC), CRT for local-regionally advanced esophageal cancer -> biopsy -> resection
- 118 patients had not umor identified on endoscopic biopsy.
 - 69% had local disease at time of surgery
 - Negative biopsy better predicted a pCR for squamous cell carcinoma versus adenocarcinoma (54.3% vs 13.6% P<0.001).
 - Nodal status of surgical specimens did not correlate
 - Survival was equivalent
- CONCLUSION: An egative endoscopic biopsy is not a useful predictor of a pCR after CRT, final nodal status, or overall survival

'Sağlığın Merkezi'

SarkarialS, et al. Ann Surg. 2009.

Assessment of Response Following Neoadjuvant Therapy

- PETis useful in restaging after CRT to exclude distant metastasis
- Multiple studies are looking at progrostic value after CRT or chemotherapy
- Preliminary results suggest that PET/CT can potentially be a prognosticator for OS, but data on meaningful prediction of response are lacking

Assessment of Response Following Neoadjuvant Therapy

- Retrospective analysis
- n:152(Esoph/GEJACA) ORTandsurgery
- >52% SUV decrease was associated with improved OS (43% vs 72% at 3 y)
- Pathologic response with <50% residual cancer associated with longer OS
- SUV decrease is the only prognostic factor of OS (multivariate analysis)

'Sağlığın Merkezi'

Javeri Hetal. Cancer. 2009

Assessment of Response Following Neoadjuvant Therapy-PET/CT

Original Article

A Prospective Evaluation of the Utility of 2-Deoxy-2-[¹⁸F]Fluoro-D-Glucose Positron Emission Tomography and Computed Tomography in Staging Locally Advanced Gastric Cancer

Elizabeth Smyth, MD¹; Heiko Schöder, MD²; Vivian E. Strong, MD³; Marinela Capanu, PhD⁴; David P. Kelsen, MD¹; Daniel G. Coit, MD³; and Manish A. Shah, MD¹

Cancer November 15, 2012

Aim to prospectively examine, the potential added benefit of FDG-PET/CT to modern gastric cancer staging paradigms.

'Sağlığın Merkezi'

Table 1. Patient Characteristics

Characteristic ($n = 113$)	Value		
Sex			
Male	68	(60%)	
Female	45	(40%)	
Median age, y	61	(range: 25-83 y)	
Site			
Gastric	71	(63%)	
Proximal/gastroesophageal junction	42	(37%)	
Lauren's Classification			
Intestinal	38	(34%)	
Diffuse	52	(46%)	
Mixed	12	(11%)	
Not reported	11	(9%)	
Differentiation			
Moderate	25	(22%)	
Moderate-poor	11	(10%)	
Poor	77	(68%)	
Stage			
≥T3 ^a	112	(99%)	
≥N1	70	(62%)	
^a 1 patient with T1N1 tumor on endoscopic ultr	rasound.		

'Sağlığın Merkezi'

Table 4. PET/CT Sensitivity and Specificity Among the Subset of Patients With Gastric Cancer Who Have Fluorodeoxyglucose-Avid Primary Tumors (n = 76)

	Me	etastatic Car Confirmed	Positive Predictive Value	
	Yes	No	Total	
PET/CT-Positive	11	1	12	91.7% (95% Cl: 62%-99.8%)
PET/CT-Negative	11	53	64	
Total	22	54	76	

CI indicates confidence interval; PET/CT, positron emission tomography/computed tomography. Sensitivity for M1 50% (95% CI: 28%-72%) Specificity for M1 98% (95% CI: 90%-100%)

'Sağlığın Merkezi'

Table 5. PET/CT Sensitivity and Specificity Among the Subset of Patients With Gastric Cancer Who Have a Negative Laparoscopy

	м	etastatic Car Confirmed	Positive Predictive Value	
	Yes	No	Total	
PET/CT-Positive PET/CT-Negative Total	10 0 10	1 81 82	11 81 92	90.9% (95% CI: 66%-90.9%)

CI indicates confidence interval; PET/CT, positron emission tomography/computed tomography. Sensitivity for M1 100% (95% CI: 73%-100%) Specificity for M1 99% (95% CI: 96%-99%)

'Sağlığın Merkezi'

PETCT can spare 27% of patients from unnecessary surgery.

 The use of FDG-PET/CT appears to add significantly to dinicans ability to correctly stage locally advanced gastric cancer prior to surgery

Happyme

'Sağlığın Merkezi'

23.11.2014 55

Happiestme

'Sağlığın Merkezi'

23.11.2014 56

ANADOLU^H